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We report experimental observations of enhanced stability of quasipatterns and superlattice patterns in a
vertically oscillated, deep viscous fluid layer with the addition of a third driving frequency. With two-frequency
driving in the ratios 4:5 and 6:7, 12-fold quasipatterns and type-I superlattice patterns appear, respectively, as
a secondary instability for a range of relative phases and amplitudes. Addition of a small third-frequency
component at twice the difference frequency, i.e., 4:5:2 and 6:7:2, shifts the region of stability for these patterns
closer to onset. For a range of parameter values the stabilized patterns become the primary instability. The
degree of stabilization is sensitive to the amplitude and relative phase of the third-frequency term in qualitative
agreement with a recent symmetry based analysis of resonant three-wave interactions.
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INTRODUCTION

Pattern formation is common in nonlinear dissipative sys-
tems �1�. Examples of pattern forming systems include
Rayleigh-Bénard convection �2�, Taylor-Couette flow �3�, vi-
brated granular materials �4�, and reaction-diffusion systems
�5�. Here we examine pattern formation in parametrically
driven fluid surface waves, which were first studied by Far-
aday in 1831 �6�. When a fluid with a free surface is verti-
cally oscillated, the initially flat surface loses stability be-
yond a critical acceleration amplitude, and surface waves
form: patterns of stripes and squares are typically observed
�7–10�. Faraday wave patterns provide a convenient experi-
mental system for studying pattern formation because fast
time scales and large aspect ratios are readily achieved. Also,
since the wavelength is determined by the driving frequency,
multiple characteristic length scales can be forced simulta-
neously via multifrequency driving. The driving function and
the physical properties of the fluid �viscosity, surface tension,
density, and depth� determine the pattern selection. Patterns
near onset can be regarded as a superposition of plane waves,
and the angles between the waves are determined by nonlin-
ear interactions. Amplitude equations for the waves can be
derived under the assumption of weak nonlinearity �11�.

Single-frequency driving was used to accelerate the fluid
in Faraday’s original study �6� as well as in many subsequent
investigations. Faraday waves driven with two frequencies
were not investigated until the more recent work of Edwards
and Fauve �12�. With two-frequency forcing, the amplitude
and frequency ratios and the relative phase all play important
roles in pattern selection in addition to the overall frequency
and amplitude. Many new patterns are observed, for ex-
ample, quasipatterns and superlattice patterns �12–15�.
Müller found a set of parameters where patterns of hexagons
and triangles were equally likely to appear when driven with
two frequencies in the ratio 2:4 �16�. With the addition of a
small amplitude third forcing frequency �2:4:1�, the triangu-

lar patterns were preferentially stabilized. Also with three-
frequency forcing, Arbell and Fineberg produced stable
eightfold quasipatterns �15�, and Epstein and Fineberg real-
ized stabilization of a disordered state near the bicritical
point and fast switching between hexagonal and superlattice
patterns �17�. Recently, a series of patterns �“grid states”�
have been observed for which two hexagonal lattices are
corotated such that the 12 critical wave numbers lie on a
hexagonal sublattice �18�.

Pattern selection in vertically oscillated fluid waves is
typically described theoretically in terms of a resonant triad
interaction in which two linearly unstable �critical� modes of
equal wavelength quadratically couple via a third linearly
stable �damped� mode which can be larger or smaller than
the unstable mode. The wavelength of the damped mode
determines the angle between the critical modes, which in
turn selects the pattern. Silber and co-workers have shown
that in parametrically forced, weakly damped systems, the
strength of specific three-wave interactions can be deter-
mined for a damped mode of a given temporal response
�19–21�. Using only symmetry considerations, the strength
of the nonlinear resonant triad interaction is determined by
the amplitude and relative phases of the individual driving
frequencies �22�. In particular, with even:odd two-frequency
driving where the even term is dominant, the damped mode
mediated quadratic interaction is allowed, and can be en-
hanced with the addition of a third driving component with
the proper frequency and phase.

Here we report experiments that systematically examine
the changes in pattern selection which occur with the addi-
tion of a third driving frequency at twice the difference fre-
quency of two different even mode dominant frequency ra-
tios of 4:5 and 6:7.

I. EXPERIMENT

In our experiment a 0.65-cm-deep layer of 20 cS silicone
oil is held in a cylindrical cell 7.0 cm in radius with a poly-
vinyl chloride sidewall, a 0.8-cm-thick glass bottom, and a
plexiglass top covered with a thin, white plastic sheet which
serves as a light diffuser. The cell is mounted on the ram of
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a linear air bearing connected to an electrodynamic vibration
exciter �shaker�. An audio amplifier drives the shaker with a
computer-generated wave form. Amplitudes and phases of
the Fourier components of the acceleration, measured by an
accelerometer, are used to tune the driving wave form. Fluc-
tuations in the amplitudes of these components from their
target values are less than 0.01%, while the total root-mean-
square difference between the measured and target accelera-
tion wave forms is less than 1%. To minimize variations in
viscosity and surface tension, the fluid temperature is main-
tained at 25.3±0.005 °C. Surface waves are visualized by
projecting parallel light through the cell bottom. The fluid
surface refracts the light, which then falls on the diffuser
producing an image of the surface state �23�. A charge-
coupled device camera mounted directly above the cell and
synchronized with the driving is used to acquire 40 images
uniformly distributed within the driving cycle.

For a frequency of 80 Hz, which is typical in our experi-
ments, the wave number k of the pattern just above onset is
11.8 cm−1. The corresponding dissipation length, defined as
ld=2�k / f , is approximately 0.15 cm, where � is the kine-
matic viscosity and f is the wave oscillation frequency. Since
kld�117 and kh�7.8, our experiments are in the weakly
dissipative and deep fluid layer limits �24�.

The vertical acceleration of the cell is

a�t� = Am cos�m�t� + An cos�n�t + �n� + Ap cos�p�t + �p� ,

�1�

with m :n=4:5 or 6:7 and p=2�n−m�, and where � is the
base frequency. Note that we set �m=0 without loss of gen-
erality. The acceleration amplitudes Ai are measured in units
of g=9.81 m/s2, where g is the acceleration due to gravity at
the surface of the earth. We compare patterns for three-
frequency driving with patterns for two-frequency driving,
�i.e., Ap=0� near the bicritical point for two-frequency driv-
ing with the Am term �m=4 or 6� dominant. Thus, the pattern
wave number is approximately equal to the wave number for
single-frequency driving at m�. With 4:5 driving, there is a
region in parameter space well above onset where 12-fold
quasipatterns exist �see Fig. 1�. With 6:7 driving, type-I su-
perlattice patterns �13� are observed �see Fig. 2�. We will
demonstrate that by adding a small third-frequency compo-
nent with the correct phase to the driving function, both qua-
sipatterns and superlattice patterns appear near onset. By
scanning the parameters Ai and � j �i� �m ,n , p� , j� �n , p��,
we will show that the stability of these patterns is strongly
influenced by the third frequency driving term via Ap and �p.

We classify the experimental patterns by first computing
the spatial Fourier power spectrum of the pattern image in
polar coordinates p�k ,��. The angular autocorrelation of en-
ergy on a circle with radius k at angle � is

Ck��� =

�
�

P�k,��P�k,� + ��

�
�

P�k,��P�k,��
, �2�

with P�k ,��= p�k ,��− 	p�k ,��
� as in earlier work �10,14�.
Ck��� is evaluated at k=km, the magnitude of the primary

pattern wave number. Hexagonal, superlattice, and 12-fold
quasipatterns all have sixfold symmetry, so Ckm

�60° � is
nearly 1 for all three patterns. 12-fold quasipatterns have an
additional maximum in Ckm

at �=30°, while type-I superlat-
tice patterns have a second maxima at �=22°. For square
patterns �including 2MS�, Ckm

�90° ��1. Accordingly, we use
Ckm

�60° �, Ckm
�22° �, Ckm

�30° �, and Ckm
�90° � to identify the

patterns. Table I summarizes our classification scheme. Our
results are not sensitive to the exact value of the threshold
�0.6 here� since the transitions between different patterns are
sharp. Finally, note that Ckm

��� depends on the phase in the
cycle where an image is acquired and on the driving param-
eters; for a given set of parameters, the pattern state is deter-
mined using the image with the largest value of Ckm

��� for
�= �22° ,30° ,60° ,90° �.

II. RESULTS

Figure 1 shows the fluid surface pattern states for 4:5
driving as a function of A4 and A5 at fixed relative phase.

FIG. 1. Unperturbed phase diagram for 4:5 driving with � /2�
=20 Hz and �5=16°. For hexagons and 12-fold quasipatterns �QP�,
the 4� driving term is dominant �waves oscillate at 2��, while
for squares and square two-mode superlattice patterns �2MS�
�14,15� the 5� term is dominant. Dashed lines indicate the region
where the higher acceleration resolution measurements of Fig. 3 are
performed.

FIG. 2. Unperturbed phase diagram for 6:7 driving with
�=16.5 Hz and �7=40°. For hexagons and type-I superlattice pat-
terns �SL�, the 6� driving term is dominant �waves oscillate at 3��,
while for squares and 2MS the 7� term is dominant. Dashed lines
indicate the region where the higher acceleration resolution mea-
surements in Fig. 5 are performed.
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Patterns of squares are stable when either driving amplitude
is dominant, while hexagons, square two-mode superlattice
patterns, and 12-fold quasipatterns appear when the ampli-
tudes are comparable. At larger amplitudes, the surface
waves are spatially and temporally disordered. To investigate
the effect of adding a third frequency, a region of Fig. 1 �as
indicated by dashed lines� is examined with higher accelera-
tion resolution �0.1g�. Figure 3�a� is the phase diagram for
4:5 driving, while Fig. 3�b� shows results for 4:5:2 driving
over the same range of A4 and A5 but with �2=32° and A2
=0.8g=0.59A2c, where A2c=1.36g is the critical acceleration
amplitude for single frequency driving at 2�. Each symbol in
the graph represents an experimental data point. Data were
also collected in the featureless regions of the figure �below
onset�, but are not marked by a symbol. Wave onset is typi-
cally hysteretic with a magnitude of approximately 0.01g.
Higher resolution measurements of the hysteresis and its de-
pendence on phase will be reported elsewhere �25�.

Three main differences exist between the two-frequency
and three-frequency phase diagrams. First, the region of
stable hexagons becomes much smaller with the addition of
the third frequency term. For two-frequency driving, there is
a large region of hexagons, but for three-frequency driving,
hexagons almost disappear, except for a small area where A5
is small. Second, the 12-fold quasipattern becomes the pri-

mary instability for A5�5g and most of the region corre-
sponding to hexagons for two-frequency driving converts to
12-fold quasi-patterns with the addition of the finite A2 term.
Third, the transition between ordered patterns and a disor-
dered state occurs at lower driving amplitudes.

To gain a better understanding of the effect of the magni-
tude of A2, Fig. 4�a� shows the observed pattern as a function
of A2 and A4 with fixed A5 and phases. The quasipattern
region shifts close to onset when A2 exceeds 0.6g �0.44A2c�.
Also note that the disordered region moves close to onset for
the largest value of A2.

Edwards and Fauve reported that the relative phase influ-
ences pattern selection for two-frequency driven Faraday
waves �12�. Recent experimental work on the stability
boundary of hexagonal patterns with two-frequency driven
Faraday waves also demonstrates that the phase of the driv-
ing function plays an important role in pattern selection �25�.
Here, we observe that the relative phases remain important in
three-frequency driving. Since only two phases are indepen-
dent, a two-dimensional phase diagram is used to explore the
effect of the phases for fixed driving amplitudes as Fig. 4�b�
shows. The amplitudes correspond to a point in the center of
the 12-fold quasipattern region in Fig. 3�b�. The phases of
the driving function clearly affect the stability of the quasi-
pattern with the strongest patterns occurring within roughly
linear regions where �2	2�5. Accordingly, the phase dia-
gram is identical for �5→�5+�. Within the linear regions of
stability there are four regions at �2=0, �5= �0,�� and �2

=�, �5= �� /2 ,3� /2� where the quasipatterns are strongest.
We also observe stabilization and phase dependent effects

in type-I superlattice patterns when a third frequency is
added �6:7 and 6:7:2 driving� which are similar to those ob-
served in the 12-fold quasipattern experiments. As Fig. 2
shows, squares are again the preferred state when a single
amplitude is dominant, and hexagons, square two-mode su-
perlattice patterns, and now type-I super lattice patterns �in-
stead of quasipatterns� are evident in the vicinity of the co-
dimension-2 point with spatiotemporal disorder occurring at
larger driving. Unlike quasipatterns, the superlattice state is
surrounded by a region of stable hexagons.

The higher acceleration resolution phase diagrams of Fig.
5 show the difference between 6:7 and 6:7:2 driving for the
parameter region in Fig. 2 marked by dashed lines. By add-

TABLE I. Pattern classification.

Pattern Ckm
�60° � Ckm

�30° � Ckm
�22° � Ckm

�90° �

Hexagonal �0.6 
0.6 
0.6 
0.6

Type-I SL �0.6 �0.6 
0.6 
0.6

12-fold QP �0.6 
0.6 �0.6 
0.6

Square or 2MS 
0.6 
0.6 
0.6 �0.6

Disordered 
0.6 
0.6 
0.6 
0.6

FIG. 3. Phase diagrams for varying A4 and A5 with �a� 4:5 and
�b� 4:5:2 driving where � /2�=20 Hz and �5=16°: hexagons ���,
quasipatterns ���, squares and 2MS ���, and disordered ���. Un-
marked regions indicate a flat surface state. In �b� the addition of
the 2� term with A2=0.8g=0.59A2c and �2=32° shifts the quasi-
pattern region to onset, which changes by less than 0.1g.

FIG. 4. �a� Phase diagram for 4:5:2 driving with �A5 ,�2 ,�5�
= �5g ,32° ,16° �. The quasipattern region rapidly approaches onset
when A2 exceeds 0.6g=0.44A2c. Symbols are the same as in Fig. 3.
�b� Quasipattern measure Ckm

�30° � vs �2 and �5 for �A4 ,A5 ,A2�
= �3.8g ,5.8g ,0.8g�. The slopes of the large correlation regions �bor-
dered by contours� are roughly 2. In both �a� and �b� � /2�
=20 Hz.
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ing a small amplitude 2� component with A2=0.4g �onset
occurs at A2c=1.0g for single-frequency driving at 2��, the
phase diagram is significantly altered. The type-I superlattice
region moves closer to onset and to lower values of A7. How-
ever, unlike quasipatterns in 4:5:2 driving, when type-I su-
perlattice patterns in 6:7:2 driving lose stability at higher
amplitudes, hexagonal patterns or a disordered state appear
depending on the value of A7. Stabilization is sensitive to the
magnitude of A2 as demonstrated in Fig. 6�a�. The type-I
superlattice is absent for A2=0, but gradually emerges as A2
increases above 0.2g. When A2�0.56g, the disordered state
appears, and pattern onset is also higher. Figure 6�b� shows
the effect of varying the driving phases �2 and �7 for fixed
acceleration amplitudes. As was the case for quasipatterns
with 4:5:2 driving, type-I superlattice patterns exist within
regions where �2 is proportional to 2�7. However, for 6:7:2
driving, these regions are devoid of obvious internal struc-
ture.

DISCUSSION AND CONCLUSION

In both 12-fold quasi-patterns and type-I superlattice pat-
terns, there is one primary wavelength in the Faraday wave
pattern—the 4� mode in 4:5:2 driving and the 6� mode in

6:7:2 driving. The magnitudes of A5 and A2 for quasipatterns
and A7 and A2 for superlattice patterns are below onset so
that their corresponding modes are linearly damped. In a
symmetry based analysis, Porter et al. �19,22� have shown
that the � linearly damped mode �parametrically excited by
the A2 term� plays an important role in pattern formation.
Combined with the wave vectors corresponding to 2� for
quasipatterns or 3� for superlattices �driven by A4 or A6
respectively�, resonant triads are formed, as illustrated in Fig.
7. When the resonance conditions are satisfied, k�m+k�m=k�p
and the driven damped modes stabilize the corresponding
patterns.

As Figs. 3�b� and 5�b� show, 12-fold quasipatterns and
type-I superlattice patterns can both become the primary in-
stability when driven with three frequencies, even though the
third-frequency amplitude A2 is only about one-half of its
critical value for single-frequency driving at 2�. Porter et
al.’s theoretical results indicate that the resonance condition
for three-frequency driving m :n : p is affected by a “total”
phase  defined as �22�

 = 2�m − 2�n + �p. �3�

The cross-coupling coefficient which enhances the three-
wave interaction is maximized when sin � ±1. Since the
resonance condition requires a linear relation between �p
and 2�n �recall that we have set �m=0 with no loss of gen-
erality�, the stable pattern forming regions �see Figs. 4�b� and
6�b�� should form straight bands with slope 2 when plotted
as functions of �n and �p. Indeed, when �2	2�5, 12-fold
quasipatterns are preferred in 4:5:2 driving, and when �2
	2�7, type-I superlattice patterns are preferred in 6:7:2 driv-
ing. These results provide support for the three-wave reso-
nance Faraday wave pattern selection mechanism via three-
frequency forcing proposed by Porter et al. �22�. However,

FIG. 5. Phase diagrams for �a� 6:7 and �b� 6:7:2 driving with
varying A6 and A7 where �7=40° and � /2�=16.5 Hz: superlattice
���, hexagons ���, and disordered ���. In �b� �2=80° and A2

=0.4g=0.4A2c.

FIG. 6. �a� Phase diagram for varying A2 and A6 with
�A7 ,�2 ,�7�= �7.0g ,80° ,40° �. Symbols are the same as in Fig. 5.
Super-lattice patterns appear for A2�0.2A2c. �b� S.L. pattern mea-
sure vs. �2 and �7 for �A6 ,A7 ,A2�= �5.2g ,7.8g ,0.6g�. In both �a�
and �b� � /2�=16.5 Hz.

FIG. 7. �a� 12-fold quasipattern with 4:5:2 driving
��A4 ,A5 ,A2�= �3.8,6.0,0.8�, ��5 ,�2�= �16° ,32° �, � /2�=20 Hz�,
and �b� type-I superlattice with 6:7:2 driving ��A6 ,A7 ,A2�
= �4.4g ,7.4g ,0.4g�, ��7 ,�2�=0, � /2�=15 Hz�. Resonant triad
construction of patterns illustrated with power spectra from �c� qua-
sipattern image �a�, and �d� superlattice image �b�. Images �a� and
�b� are 5.25�5.25 cm2. All images have inverted gray scales.
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the phase diagrams in Figs. 4�b� and 6�b� show that  ap-
pears shifted by � from its predicted form, i.e., =−2�n
+�p+� with ��� /2 and ��� /3 for 4:5:2 and 6:7:2 driving
respectively. In addition, Fig. 4�b� has structure not predicted
by the theory, which may indicate the existence of other
interactions sensitive to the relative phases.

Finally, we discuss our results in light of a recent report
by Epstein and Fineberg �18� of Faraday wave patterns with
6:7 forcing perturbed by a third driving frequency. In 18 cS
shallow layers �0.2 cm and 0.3 cm deep� they find “grid
state” patterns for which the 12 constituent wave numbers lie
on a hexagonal sublattice. These patterns include a 12-fold
quasipatternlike state for which the two underlying hexago-
nal patterns are rotated by 28° rather than 30° for true 12-
fold quasipatterns. In contrast, our experiments reveal true
12-fold quasipatterns with 4:5:2 driving, while grid state 12-
fold quasipatterns are seen with 4:5 driving. Figure 8 com-
pares the structure of these two types of patterns by plotting
the difference in angle �n+1−�n between successive peaks in
the power spectra. For 12-fold quasipatterns the difference is
always near 30° while for grid state quasipatterns the differ-
ence alternates between approximately 28.5° and 31.5°
which are close to the values observed by Epstein and

Fineberg of 28° and 32° with perturbed 6:7 driving. In our
experiments the addition of the third frequency produces a
true 12-fold quasipattern while in the experiments of Epstein
and Fineberg the third frequency generates grid states. This
contrasting behavior could be due to the difference in fluid
depth, base frequency, or frequency ratio of the two main
modes �i.e., 4:5 vs 6:7�. Also, Epstein and Fineberg find that
the stability of the type-I superlattice pattern �which they
label as a “3:2 grid state”� is a function of the total phase 
with a peak in stability at �2� /3, which differs from our
finding of maximum stability at �� /6 for 6:7:2 driving
�see Fig. 6�b��. Additional experiments at intermediate fluid
depths could be illuminating.

We have performed high acceleration resolution studies
comparing the stability of 12-fold quasipatterns and type-I
superlattice patterns driven at two frequencies to the same
patterns driven with an additional third frequency at twice
the difference of the two original frequencies. In the latter
case and with the proper choice of phases and amplitudes,
both patterns appear at the linear stability threshold, whereas
in the former case, they appear via a secondary instability of
a hexagonal pattern. Our experimental results reveal that the
third frequency term, when added at the proper frequency
and phase and with sufficient magnitude, enhances the sta-
bility of both patterns in support of the theory of Silber and
co-workers �19–22�. However, there is a difference in the
measured and predicted values of the total phase  for maxi-
mum pattern stability. Because the relative phases affect the
resonance mechanism, the phase of the third frequency can
be used to switch between different patterns. Adjusting
phase, rather than amplitude, may offer a convenient method
of pattern control.
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